• DO use mechanical aids in preference to direct manual handling of cylinders (ramps, trolleys, forklifts, scissors lifts).
• DO remove any connected equipment, eg regulator, AND refit any supplied valve protection cap and or valve outlet gas tight cap/plug prior to moving cylinders.
• DO ensure cylinders are positively secured to mechanical lifting/handling devices prior to movement.
• DO familiarise yourself with and observe appropriate safe lifting techniques/postures prior to manually handling heavy large gas cylinders.
• DO assess the load weight and dimensions before attempting any lift.
• DO use appropriate personal protective equipment (PPE) – wear safety footwear and leather gloves to protect against falling or slipping cylinders crushing hands or feet during moving.
• DO ensure a positive hand grip prior to commencing a manual lift.
• DO ensure that loads are equally shared when attempting two person lifts.
• DO note environmental conditions prior to handling cylinders – wet, hot or cold cylinders may diminish the quality of hand grip and footing may be compromised.
• DO NOT bear hug cylinders to effect a lift.
• DO NOT lift or lower cylinders where the operators hands are above shoulder height or below mid thigh height.
• DO NOT edge roll cylinders up or down steps of 250mm or greater.
• DO NOT edge roll cylinders over discontinuous or soft surfaces.
• DO NOT attempt to catch or restrain a falling cylinder.
• DO NOT attempt to handle cylinders if you are fatigued, physically compromised or under the adverse influence of medication or alcohol.
• DO NOT drop cylinders as a method of transfer – this may seriously damage the cylinder or its valve resulting in their failure and product release.

GENERAL SAFETY

PREVENTING INJURY

When handling heavy or large gas cylinders

Risks:
- **Awkward postures**
 - excessive bending and twisting can increase the likelihood of injury.
- **High skeletal forces**
 - loads that are excessive or unexpected can increase the likelihood of injury.
- **Work height differences**
 - moving large cylinders from ground to vehicle or from dock to vehicle may increase the likelihood of injury.
- **Poor hand grip**
 - uncontrolled lifts and insecure grip of load can lead to increased likelihood of injury.
- **Physical capacity**
 - Age, physical condition, gender, medications and alcohol can influence safe cylinder handling.
- **Environmental conditions**
 - Wet conditions, cold or excessive heat may affect safe cylinder handling.

Australia and New Zealand Industrial Gas Association

PO Box 422

Flinders Lane Vic 8099

Level 10, 10 Queen Street

Melbourne Vic 3000

Telephone: +61 3 9611 5412

Email: office@anziga.com

Member Companies in Australia:

Air Liquide Australia Limited

ABN 57 004 385 782

380 St Kilda Road

Melbourne VIC 3004

Australia

Adelaide:

(08) 8209 3600

Brisbane:

(07) 3246 6363

Darwin:

(08) 8947 1184

BOC Limited

ABN 95 000 029 729

Riverside Corporate Park

10 Julius Ave

North Ryde NSW 2113

Australia

Telephone: 131 262

Fax: 132 427

Emergency Number: 1800 653 572

Coregas Pty Ltd

ABN 32 001 255 312

66 Loftus Road

Yennora NSW 2161

Australia

Telephone: 1800 807 203

IMPORTANT

This publication contains information sourced by anziga from its members and third parties. The information is summary in nature and intended as a guide only. While anziga has taken care to ensure the accuracy of the information, you should not rely on the information as being suitable for your particular circumstances. The information is not intended to replace any training required by the regulatory authorities or which may generally be desirable. Legislation covering the subject matter of this publication may apply. You should obtain legal advice or refer to the appropriate legislation to ensure compliance with your legal obligations. To the extent permitted at law, anziga expressly disclaims all liability for damage to or loss of property, personal injury, death and economic loss that may arise as a result of negligence, or other tort, or breach of statutory or contractual obligation, on the part of anziga in the preparation and publication of this guide.

Preventing Injury

When handling heavy or large gas cylinders

Risks:
- **Awkward postures**
 - excessive bending and twisting can increase the likelihood of injury.
- **High skeletal forces**
 - loads that are excessive or unexpected can increase the likelihood of injury.
- **Work height differences**
 - moving large cylinders from ground to vehicle or from dock to vehicle may increase the likelihood of injury.
- **Poor hand grip**
 - uncontrolled lifts and insecure grip of load can lead to increased likelihood of injury.
- **Physical capacity**
 - Age, physical condition, gender, medications and alcohol can influence safe cylinder handling.
- **Environmental conditions**
 - Wet conditions, cold or excessive heat may affect safe cylinder handling.
- **High centre of gravity and small base area**
 - Some large high pressure cylinders, e.g. G, F, F & K sizes, have increased instability due to this, especially on uneven surfaces.

Consider this BEFORE handling your cylinders

Think before you lift

Don’t bear hug cylinders

Team lift, share the load

When handling heavy or large gas cylinders

Risks:
- **Awkward postures**
 - excessive bending and twisting can increase the likelihood of injury.
- **High skeletal forces**
 - loads that are excessive or unexpected can increase the likelihood of injury.
- **Work height differences**
 - moving large cylinders from ground to vehicle or from dock to vehicle may increase the likelihood of injury.
- **Poor hand grip**
 - uncontrolled lifts and insecure grip of load can lead to increased likelihood of injury.
- **Physical capacity**
 - Age, physical condition, gender, medications and alcohol can influence safe cylinder handling.
- **Environmental conditions**
 - Wet conditions, cold or excessive heat may affect safe cylinder handling.
- **High centre of gravity and small base area**
 - Some large high pressure cylinders, e.g. G, F, F & K sizes, have increased instability due to this, especially on uneven surfaces.
CYLINDER HANDLING TECHNIQUES

Manual handling includes actions such as:

edge rolling (often referred to as trundling or churning), dragging, sliding, pivoting, unassisted and assisted lifts.

Edge rolling, trundling or churning are terms used to describe moving cylinders short distances, usually no more than about 2 metres, by lifting and rolling on the base edge or base ring. It is a technique that requires a high level of coordination and should be restricted to experienced and trained operators.

Dragging a cylinder along the ground is NOT a preferred method of movement as it may damage the base and weaken the cylinder. Cylinders fitted with a base rings are also subject to damage from base ring distortion and wear.

Sliding a cylinder up or down over a smooth edge should be limited to situations where the operator’s hand height remains above that of their standing mid thigh. It is important to ensure that the cylinder weight is distributed evenly and is being lifted or lowered smoothly.

Pivoting is the method of lifting tall cylinders a short distance by using the knee as fulcrum. This is the most commonly used method and should be followed when moving cylinders a short distance. The height of the cylinders excludes the valve, which can be adjusted to vehicle tray height allowing vertical transfer of cylinders from ground level to tray height. Tall cylinders with narrow bases that are unstable should be secured during the transfer to avoid falling. Operators must not ride on tailgate lifters.

Trolleys/hand trucks fitted with large diameter pneumatic tyres allow cylinders transfers over short to medium distances e.g. up to 50 metres and over any discontinuous surfaces e.g. gutters, low steps and broken ground. Cylinders must be secured to the trolley or handcart to avoid falling during movement.

Ramps provide a continuous surface (suitable for cylinder trundling) between two levels. The ramp surface should be textured to prevent slippage of cylinders. The ramp gradient should be small enough to allow for controlled cylinder descent or comfortable ascent and prevent slipping.

Loading docks approximate common vehicle tray heights and reduce total cylinder lift distance. Height differences between loading docks and vehicle tray may necessitate raising or lowering cylinders by hand. Note sliding technique as described above.

Scissor lifts can be used to lift vehicle tray height allowing trundling or trolley transfer of cylinders. Cylinders should be secured during the transfer to avoid falling. To assist this, at least a partially caged platform is preferred. People should not ride on scissor lifts.

TYPICAL CYLINDER WEIGHTS AND DIMENSIONS

The following “Typical” cylinder sizes, dimensions and weights should be noted. They are given purely as a guide. Cylinder weights and dimensions will vary depending on the cylinder manufacturer’s specifications and tolerances as well as the cylinder content at the time i.e. full or empty.

NOTE the RED area indicates cylinders whose Gross Weight may, depending on their contents, be regarded as Heavy, for manual lifting purposes.

<table>
<thead>
<tr>
<th>CYLINDER SIZE</th>
<th>NET WT. (kg)</th>
<th>HEIGHT (NOTE 1) (mm)</th>
<th>OUTSIDE DIAM. (mm)</th>
<th>GROSS WT. SIZE (kg)</th>
<th>MAX.MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALUMINIUM CYLINDERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>42</td>
<td>1365</td>
<td>250</td>
<td>74 – 44</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>24</td>
<td>1445</td>
<td>215</td>
<td>46 – 22</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>22</td>
<td>955</td>
<td>215</td>
<td>43 – 29</td>
<td></td>
</tr>
<tr>
<td>VT</td>
<td>15</td>
<td>625</td>
<td>215</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>585</td>
<td>175</td>
<td>17 – 11</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>410</td>
<td>117</td>
<td>4 – 3</td>
<td></td>
</tr>
<tr>
<td>STEEL CYLINDERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHP</td>
<td>90</td>
<td>1410</td>
<td>233</td>
<td>107 – 103</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>50</td>
<td>1410</td>
<td>229</td>
<td>82 – 59</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>28</td>
<td>910</td>
<td>200</td>
<td>44 – 30</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>760</td>
<td>150</td>
<td>18 – 12</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>3.5</td>
<td>480</td>
<td>100</td>
<td>5 – 4</td>
<td></td>
</tr>
<tr>
<td>ACETYLENE CYLINDERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>50 – 60</td>
<td>800 – 1000</td>
<td>300</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>25 – 29</td>
<td>750 – 900</td>
<td>210</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>14 – 18</td>
<td>470 – 490</td>
<td>155</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>LOW PRESSURE CYLINDERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>28</td>
<td>1240</td>
<td>375</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>28</td>
<td>840</td>
<td>375</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>20</td>
<td>817</td>
<td>310</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>500</td>
<td>310</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>22</td>
<td>813</td>
<td>310</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>6.5</td>
<td>400</td>
<td>260</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1 The height of the cylinders excludes the valve, which can be adjusted to 0 and 120mm depending on the valve type, but includes the valve protection ring usually welded to the Low/Medium pressure cylinders.

NOTE 2 Liquefied gas cylinders e.g. LPG, Carbon Dioxide etc. are considerably heavier than those containing permanent gases such as Oxygen, Nitrogen, Argon etc.

SAFETY PRECAUTIONS

1. An employer must take all practical steps to make sure that the work practices carried out in the workplace are designed to be as far as practicable safe and without risk to health and safety.

2. An employee having received appropriate training in safe manual handling techniques and in the correct use of mechanical aids shall use that training and techniques.

3. Employers should employ a risk control strategy that includes conducting risk assessments.

4. Employees should consult with their employer if they are unclear on aspects of safe manual handling of cylinders.

5. Specific information relating to manual handling is available from the various State Government Departments.

Disclaimer

The information provided is not intended to replace manual handling training as required by the various state regulatory authorities.

Reference

